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Abstract
While there have been many studies based on models of amorphous silicon,
there have been surprisingly few (perhaps only one) that have seriously
addressed the radial distribution function at low temperature. Our work is
based in part on the so-called NRL tight binding method using parameters
for silicon determined by Bernstein et al. As we have recently shown in the
case of 216-atom models, upon including zero-point motion good agreement
is obtained with very accurate low temperature x-ray diffraction measurements
by Laaziri et al of the radial distribution function, although, as also found by
Herrero who used the Stillinger–Weber potential, a slight asymmetry of the
first peak in the RDF is predicted and this asymmetry has not been observed
experimentally. Upon use of an estimate of zero-point broadening from our
previous work we show here that 1000-atom models lead to good agreement
with experiment for the RDF. Perhaps fortuitously, we obtain models that
agree with the experimentally determined second peak in the RDF for both
annealed and unannealed samples: our tight binding relaxed models based on
topologies derived from the Wooten–Winer–Weaire method and the Barkema–
Mousseau method yield unannealed-sample results, whereas our tight binding
relaxed model based on an MD quench of the liquid using the semi-empirical
interatomic potential, EDIP, of Kaxiras and coworkers yield the annealed-
sample results. Finally, the significant effect of zero-point motion on the first
peak in the radial distribution that we obtain in the case of amorphous silicon
could also have implications for other amorphous materials, e.g. SiO2.
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1. Introduction

The natural breadth of the first peak in the radial distribution function (FPRDF) of amorphous
silicon was only recently observed for the first time by Laaziri et al [1] by carrying out x-ray
diffraction measurements out to a sufficiently large Qmax (maximum value of the magnitude
of the diffraction vector). Their results from a polycrystal at T = 10 K suggest that even
at this temperature the FPRDF of amorphous silicon is substantially broadened beyond the
inherent static structural broadening. They obtained data for as-implanted and annealed
samples and concluded that the average coordination is approximately 3.88 for the former
and 3.79 for the latter. We have previously applied [2] the NRL tight-binding (TB) method
to simulations of vibrational, elastic, and structural properties of two 216-atom models. We
found that conclusions by Laaziri et al for the coordination might be modified if one allowed
for asymmetry in the FPRDF, an asymmetry that we observed computationally both before and
after applying zero-point broadening, although it is substantially more apparent in the former
case. Here we present in more detail the zero-point broadening parameter computed for one
of our 216-atom models, and apply it approximately to larger models. We study 1000-atom
models generated by several methods:

(a) the Wooten–Winer–Weaire (W) bond switching algorithm [3];
(b) quenching of the liquid state via molecular dynamics and the environment-dependent

interatomic potential (EDIP) [4];
(c) an improved Wooten–Winer–Weaire method, Barkema and Mousseau (BM) [5];
(d) relaxation of W, EDIP, and BM models using the conjugate gradient method with forces

computed with the NRL-TB approach (the relaxed models are denoted by TB-W, TB-
EDIP, and TB-BM, respectively).

Compared to our original work this new analysis gives better statistics, allows us to examine
the RDF at longer distances, and adds a structural model generated with another method.

2. Brief discussion of NRL tight binding

In this scheme tight binding parameters are represented by polynomial functions of
interatomic distances fitted to the total energy and eigenvalues of first-principles LAPW/LDA
calculations [6]. The tight binding Hamiltonian representational basis is non-orthogonal and
the sum of eigenvalues of the occupied states gives the total energy. For silicon we use the
sp3 basis and include in the fit the crystalline diamond-, FCC-, BCC- and SC-structure total
energies (versus volume) and electron band energies [7].

3. Brief discussion of theory for RDF

The expression for the measured RDF is

J (r) = (1/N)

〈∑
i �= j

δ(r − ri j)

〉
, (1)

where the brackets denote the statistical mechanical average. To our knowledge, prior to our
work only Herrero [8] calculated this quantity for an amorphous system within a quantum
mechanical framework as he performed path-integral Monte Carlo calculations for J (r) with
use of the Stillinger–Weber potential [9]. That procedure takes into account possible large
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displacements from equilibrium. However, the small displacement, harmonic approximation
ought to be sufficiently accurate at low temperature. In this latter approximation,

J (r) = 1

N

∑
i �= j

1√
2πUr

i j

exp(−(r0
i j − r)2/(2Ur

i j)), (2)

where

Ur
i j ≡ 〈(r̂0

i j · ui j)
2〉 = h̄

8m

∑
α

(eα
i j · r̂0

i j)
2(n + 1/2)/ωα. (3)

Here r is the distance between atoms, u is an atomic displacement from equilibrium, ωα(eα) is
the αth normal mode angular frequency (eigenvector), n is the phonon occupation number, and
the subscripts indicate differences between atoms i and j . We shall also consider the so-called
static structure factor obtained by replacing ri j in equation (1) by r0

i j .

4. 216-atom model results for Ur
ij

In figure 1 we plot, as a function of ri j , both Ur
i j and the bond stretching force constant (FC)

discussed in [2] and shown there only over the region of the FPRDF. As shown in the bottom
right panel of the figure, the nature of the bond-stretching FCs appears to bifurcate at the upper
end of the second peak in the RDF and this effect is present in Ur

i j as well. At the upper edge
of the second peak pairs of atoms of both second and third neighbours exist (note the well
known absence of a peak corresponding to the third-neighbour peak in the crystal). We believe
these results show the distinction in character of bonding between second- and third-neighbour
interactions. The fitted curve is given by the following expression (in the units of the figure):

Ur
i j = 0.002 616 + 0.003 965(ri j − 2.35) + 0.007 13(ri j − 2.35)2.

5. Results

5.1. Energetics and structural parameters

In table 1 we give some structural parameters of interest for our TB relaxed 1000-atom models.
Consistent with experiment, the density of these models at zero pressure (defined as the
trace of the stress tensor2) are found to be less than the corresponding crystalline density,
0.050 07 atoms Å−3. These results are given in the table in terms of the volume difference
δV ≡ Va −Vc. Upon inspecting the RDF we chose the value 2.8 Å as the interatomic distance
below which atoms are considered to be bonded. This choice, for TB-W, yields six fivefold
coordination defects, whereas, for the pristine W-model, it yields no coordination defects. In
the case of TB-EDIP, there are ten threefold and 32 fivefold atoms and in the case of TB-BM
there are no coordination defects. (In the table, the average coordination is denoted NC.) Also
given in the table are numbers of four-membered rings, N4, in order to provide some indication
of differences in topology among the models. The values of bond angles, θ , are restricted to
atoms which are fourfold coordinated and the values in parentheses are results of Gaussian
fits to the distribution functions for values of θ . As seen in table 1, among our three models,
TB-EDIP yields the narrowest width of the distribution of bond angle deviations, although
TB-BM yields the smallest RMS bond angle deviation, defined with respect to θave, the bond
angle average. These latter values are also consistent with estimates from experiment based

2 Stress tensor components of about 0.8 GPa or less are obtained due to the finite size of the models and cubic
boundary conditions.
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Figure 1. Comparison of zero-point broadening parameter, top panel, bond stretching force
constant and radial dependence of the RDF, bottom two panels. The dashed curve is fitted to
Ur

i j for r � 2.8 Å (see text). The results are based on the 216-atom TB-W model.

Table 1. Structural parameters.

Model NC (δV)/Vc (%) N4 θave (deg) �θRMS (deg)

TB-W 4.01 1.45 25 109.2 (108.8) 11.0 (10.8)
TB-EDIP 4.05 0.5 38 109.2 (108.7) 10.5(9.8)
TB-BM 4.0 1.31 0 109.2 (108.7) 10.1(10.4)
Exp. �3.88 �1.7

on the formulation of Beeman, Tsu and Thorpe [10] for the width of the ‘optic mode’ Raman
peak.

Weaire [11] and Weaire and Thorpe [12] showed, with the use of a simple tight binding
model, that a bandgap is obtainable even if the structure lacks crystalline periodicity. Their
seminal work is strictly relevant to systems with purely topological disorder. Of course, for
more realistic tight binding/structural models, even those for which all atoms are fourfold
coordinated, having a clean gap is not guaranteed due to the allowed complexity of tight
binding parameters and their dependences on interatomic distances. We give the electronic
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Figure 2. Electronic band states. Left hand figures give the integrated density of states and
corresponding right hand figures give the density of states. The energy of the highest occupied
state, denoted by EF, and the total energy decrease in order for models TB-W, TB-EDIP and
TB-BM.

(This figure is in colour only in the electronic version)

density of state information for the three models under consideration in figure 2. We note
that our value for the gap, which is well defined only for models TB-W and TB-BM, is
approximately 0.5 eV compared to the more accurate value of approximately 1 eV on the basis
of ab initio calculations and other structural models [5, 13]. Our too small gaps are consistent
with the corresponding results for the crystal; they are due to the fact that the sp3 set of tight
binding parameters was not closely fitted to the LAPW/LDA results for the conduction bands
of the crystal [7]. Finally, we have obtained the following results for total energies: relative to
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Figure 3. Static RDFs. Experimental data are included for comparison.

the total energy for the corresponding 1000-atom crystalline model at its equilibrium volume,
we obtain increases of 0.2225, 0.2183, and 0.1958 eV/atom for TB-W, TB-EDIP, and TB-BM,
respectively. These values are also in reasonable agreement with the quoted [4] experimental
value of <0.19 eV/atom.

5.2. Static structural quantities

In figure 3 we give the FPRDF for TB-relaxed static structures. We see that there is reasonable
agreement between the theoretical results for the 1000- and the previously obtained 216-atom
models as well as among results for the three different methods of deriving the ‘pristine’ models
which we relaxed. The calculated FPRDF is considerably sharper and more asymmetrical than
experiment, also shown in the figure.

6. Zero-point broadened radial distribution function

For r � 2.8 Å the broadening parameter, Ur
i j was approximated by the fitted quadratic given

above and for r > 2.8 Å , it was approximated by the constant value 0.004 78 Å2. A test of
this approximation in the case of 216-atom models yields negligible differences from the exact
results. Finally in figures 4 and 5 we show the zero-point broadened results. There is only a
small explicit zero-point effect in the region beyond the FPRDF3, because of the already-broad
features in the RDF, but the zero-point broadening in the FPRDF is large as can be seen by
comparing figures 3 and 4.

7. Conclusions

The zero-point effect in the first peak of the RDF has been shown to be important in interpreting
models of amorphous silicon. As we have first discussed in another paper on 216-atom models,
it has a large effect on the FPRDF within our TB approach. This result is also consistent with
the interpretation of Laaziri et al of their experimental results on both a-Si and polycrystalline
Si at low temperature. By extending our method to 1000-atom models we obtain a comparison
with experiment over a larger range of distances than before, and we obtain better statistical

3 Effectively, the zero-point broadening of the second peak in the RDF was discussed, on the basis of x-ray diffraction
data on polycrystalline silicon, in the second reference of [1].
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Figure 4. Comparison between theory and experiment [1] (at T = 10 K) for first two peaks of the
RDF. The theoretical quantities include the zero-point broadening (see text).
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Figure 5. Comparison with experiment of zero-point broadened RDFs. The experimental data [1]
represented in the top (bottom) two curves are for the annealed (unannealed) sample. The models
represented are in the order TB-EDIP, TB-BM, TB-BM, and TB-W from top to bottom.

results at all distances. With regard to the overall RDF, we obtain tight binding relaxed
models that agree well, if not exactly, with experiment for both as-implanted and annealed
samples. However, the lowest energy model is the relaxed BM model which agrees best with
experiment for the as-implanted sample. Perhaps, on the basis of NRL-TB, the topology of
the EDIP model is superior to that of the BM model since EDIP yields good agreement for
the annealed sample. However, the coordination ‘defects’ within the EDIP model represent
a possibly serious deficiency of the model since the model yields numerous electronic states
destroying the bandgap. Finally, the aforementioned results are based in part on a fitting
procedure of the variance in the atomic displacements appropriate to zero-point broadening,
for we have not yet obtained the full dynamical matrix for any of our 1000-atom models.



S5172 J L Feldman et al

Acknowledgments

This work was supported by the US Office of Naval Research. We are also grateful to
Dr S Roorda for a helpful communication and for sending us the x-ray data of Laaziri et al [1]
for the radial distribution function.

References

[1] Laaziri K, Kycia S, Roorda S, Chicoine M, Robertson J L, Wang J and Moss S C 1999 Phys. Rev. Lett. 82 3460
Laaziri K, Kycia S, Roorda S, Chicoine M, Robertson J L, Wang J and Moss S C 1999 Phys. Rev. B 60 13520

[2] Feldman J L, Bernstein N, Papaconstantopoulos D A and Mehl M J 2004 Phys. Rev. B at press
Feldman J L, Bernstein N, Papaconstantopoulos D A and Mehl M J 2004 unpublished Preprint

cond-mat/0405327
[3] Wooten F, Winer K and Weaire D 1985 Phys. Rev. Lett. 54 1392

Feldman J L, Kluge M D, Allen P B and Wooten F 1993 Phys. Rev. B 48 12589
[4] Keblinski P, Bazant M Z, Dash R K and Treacy M M 2002 Phys. Rev. B 66 064104
[5] Barkema G T and Mousseau N 2000 Phys. Rev. B 62 4985
[6] Cohen R E, Mehl M J and Papaconstantopoulos D A 1994 Phys. Rev. B 50 14694

Mehl M J and Papaconstantopoulos D A 1996 Phys. Rev. B 54 4519
[7] Bernstein N, Mehl M J, Papaconstantopoulos D A, Papanicolaou N I, Bazant M Z and Kaxiras E 2000 Phys.

Rev. B 62 4477
Bernstein N, Mehl M J, Papaconstantopoulos D A, Papanicolaou N I, Bazant M Z and Kaxiras E 2002 Phys.

Rev. B 65 249902 (erratum)
[8] Herrero C P 1998 Europhys. Lett. 44 734
[9] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262

[10] Beeman D, Tsu T and Thorpe M F 1985 Phys. Rev. B 32 874
[11] Weaire D 1971 Phys. Rev. Lett. 26 1541
[12] Weaire D and Thorpe M F 1971 Phys. Rev. B 4 2508
[13] Nakhmanson S M, Mousseau N, Barkema G T, Voyles P M and Drabold D A 2001 Int. J. Mod. Phys. B 15 3253


